머신러닝

나이브 베이즈(Naive Bayes)를 활용한 문서 분류 쉽게 이해하기

나이브 베이즈 분류기(Naive Bayes Classifier)는 “베이즈 정리”를 활용하여 분류를 수행하는 머신러닝 지도학습 알고리즘이다. 특히 텍스트(문서)의 분류에 많이 사용되는데, 실제로 어떤 계산을 통해 분류하게 되는지 그 과정을 최대한 쉽게 소개해본다.

베이즈 정리 (Bayes' Theorem) 쉽게 이해하기

머신러닝 알고리즘 나이브 베이즈(Naive Bayes)를 사용하기 위해서는 일단 베이즈 정리(Bayes’ Theorem)라는 걸 먼저 이해해야 한다. 본 포스팅에서는 베이즈 정리의 개념만 최대한 쉽고 단순하게 설명해본다.

랜덤 포레스트(Random Forest) 쉽게 이해하기

본 포스팅에서는 의사결정 트리의 오버피팅 한계를 극복하기 위한 전략으로 랜덤 포레스트(Random Forest)라는 방법을 아주 쉽고 간단하게 설명하고자 한다. 파이썬 머신러닝 라이브러리 scikit-learn 사용법도 함께 소개한다.

svm

서포트 벡터 머신(Support Vector Machine) 쉽게 이해하기

서포트 벡터 머신(SVM: Support Vector Machine)은 분류 과제에 사용할 수 있는 강력한 머신러닝 지도학습 모델이다. 일단 이 SVM의 개념만 최대한 쉽게 설명해본다. 결정 경계, 하드 마진과 소프트 마진, 커널, X, 감마 등의 개념과 함께 파이썬 scikit-learn 예제를 덧붙였다